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Abstract

The analysis presented here is to study the effect of linear thickness variations in both directions on vibration of visco-

elastic rectangular plate having clamped boundary conditions on all the four edges. Using the separation of variables

method, the governing differential equation has been solved for vibration of visco-elastic rectangular plate. An

approximate but quite convenient frequency equation is derived by using Rayleigh–Ritz technique with a two-term

deflection function. Logarithmic decrement, time period and deflection at different points for the first two modes of

vibration are calculated for various values of taper constants and aspect ratio.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Much work have been done on the vibrations of rectangular plate whose thickness varies in two directions
[1–4], but none of them done on visco-elastic plate. Sobotka [5] has considered free vibrations of uniform
visco-elastic orthotropic rectangular plates. Bhatnagar and Gupta [6,7] have studied the effect of thermal
gradient on vibration of visco-elastic circular and elliptic plate of variable thickness.

The main objective of the present investigation is to study the effect of taper constant in both directions on
the vibrations of visco-elastic rectangular plate having clamped support on all the four edges. The assumptions
of small deflection and linear, isotropic visco-elastic properties are made. It is assumed that the visco-elastic
properties of the plate are of the ‘Kelvin Type’. Numerical calculations have been made using the material
constants of alloy ‘Duralium’. Deflection, time period and logarithmic decrement at different instants of time
for the first two modes of vibration are calculated for various values of aspect ratio and taper constant and
results are presented in tabular form.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a length of the rectangular plate
b width of the plate
x, y coordinates in the plane of plate
h plate thickness at the point (x, y)
Mx, My bending moment
M,xy twisting moment
E Young’s modulus
G shear modulus
n Poisson’s ratio
~D visco-elastic operator

D1 Eh3/12(1�n2), flexural rigidity
r mass density per unit volume of the plate

material
t time
Z visco-elastic constant
w(x, y, t) deflection of the plate i.e. amplitude
W(x, y) deflection function
T(t) time function
b1, b2 taper constants in x- and y-direction,

respectivelyV
logarithmic decrement

K time period
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2. Analysis

The equation of motion of a visco-elastic isotropic plate of variable thickness is [6]

Mx;xx þ 2Mxy;xy þMy;yy ¼ rhw;tt, (1)

where

M ;x ¼ � ~DD1½w;xx þ nw;yy�,

M ;y ¼ � ~DD1½w;yy þ nw;xx�,

M ;xy ¼ � ~DD1ð1� nÞw;xy. ð2Þ

A comma followed by a suffix denotes partial differentiation with respect to that variable. On putting the
values of M,x M,y and M,xy from Eq. (2) in Eq. (1), one gets

~D½D1ðw;xxxx þ 2w;xxyy þ w;yyyyÞ þ 2D1;xðw;xxx þ w;xyyÞ þ 2D1;yðw;yyy þ w;yxxÞ

þD1;xxðw;xx þ nw;yyÞ þD1;yyðw;yy þ nw;xxÞ þ 2ð1� nÞD1;xyw;xy� þ rhw;tt ¼ 0. ð3Þ

The solution of Eq. (3) can be taken in the form of products of two functions as

wðx; y; tÞ ¼W ðx; yÞTðtÞ. (4)

Substituting Eq. (4) into Eq. (3), we obtain

~D½D1ðW ;xxxx þ 2W ;xxyy þW ;yyyyÞ þ 2D1;xðW ;xxx þW ;xyyÞ þ 2D1;yðW ;yyy þW ;yxxÞ

þD1;xxðW ;xx þ nW ;yyÞ þD1;yyðW ;yy þ nW ;xxÞ þ 2ð1� nÞD1;xyW ;xy�=rhW ¼ � €T= ~DT . ð5Þ

Here, dot denotes differentiation with respect to t.
The preceding equation is satisfied if both of its sides are equal to a constant. Denoting this constant by p2,

we get two equations:

½D1ðW ;xxxx þ 2W ;xxyy þW ;yyyyÞ þ 2D1;xðW ;xxx þW ;xyyÞ þ 2D1;yðW ;yyy þW ;yxxÞ

þD1;xxðW ;xx þ nW ;yyÞ þD1;yyðW ;yy þ nW ;xxÞ þ 2ð1� nÞD1;xyW ;xy� � rhp2W ¼ 0 ð6Þ

and

€T þ p2 ~DT ¼ 0. (7)

Eqs. (6) and (7) are the differential equation of motion for isotropic plate and time function for visco-elastic
plate of free vibration having variable thickness, respectively.
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3. Equation of motion

The expressions for kinetic energy T and strain energy V are [8]

T ¼ ð1=2Þrp2

Z a

0

Z b

0

hW 2 dxdy (8)

and

V ¼ ð1=2Þ

Z a

0

Z b

0

D1fðW ;xxÞ
2
þ ðW ;yyÞ

2
þ 2nW ;xxW ;yy þ 2ð1� nÞðW ;xyÞ2gdxdy: (9)

We assumed that the thickness variation of the plate in both directions as

h ¼ h0ð1þ b1x=aÞð1þ b2y=bÞ, (10)

where b1 & b2 are taper’s constants in x- & y-direction, respectively, and h0 ¼ h at x ¼ y ¼ 0.
The flexural rigidity of the plate can now be written as (assuming Poisson’s ratio n is constant)

D1 ¼ Eh3
0ð1þ b1x=aÞ3ð1þ b2y=bÞ3=12ð1� n2Þ. (11)

4. Solution and frequency equation

In order to find solution, we use Rayleigh–Ritz technique. In this method, one requires maximum strain
energy be equal to the maximum kinetic energy. So it is necessary for the problem under consideration that

dðV � TÞ ¼ 0 (12)

for arbitrary variations of W satisfying relevant geometrical boundary conditions.
For a rectangular plate clamped (c) along all the four edges, the boundary conditions are

W ¼W ;x ¼ 0 at x ¼ 0; a and W ¼W ;y ¼ 0 at y ¼ 0; b (13)

and the corresponding two-term deflection function is taken as [3]

W ¼ ½ðx=aÞðy=bÞð1� x=aÞð1� y=bÞ�2½A1 þ A2ðx=aÞðy=bÞð1� x=aÞð1� y=bÞ�, (14)

which is satisfied Eq. (13).
Now assuming the non-dimensional variables as

X ¼ x=a; Y ¼ y=a; W̄ ¼W=a; h̄ ¼ h=a (15)

and using Eqs. (11) and (15) in Eqs. (8) and (9), one obtains

T ¼ ð1=2Þrp2h̄0a5

Z 1

0

Z b=a

0

½ð1þ b1X Þð1þ b2Ya=bÞW̄
2
�dX dY (16)

and

V ¼ Q

Z 1

0

Z b=a

0

ð1þ b1X Þ3ð1þ b2Ya=bÞ3fðW̄ ;XX Þ
2
þ ðW̄ ;YY Þ

2
þ 2nW̄ ;XX W̄ ;YY þ 2ð1� nÞðW ;XY Þ

2
gdX dY ,

(17a)

where

Q ¼ Eh̄
3

0a
3=24ð1� n2Þ. (17b)

Here limit of X is 0 to 1 and Y is 0 to b/a.
On substituting the values of T & V from Eqs. (16) and (17) in Eq. (12), one obtains

ðV1 � l2p2T1Þ ¼ 0, (18)
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where

V1 ¼

Z 1

0

Z b=a

0

½ð1þ b1X Þ
3
ð1þ b2Ya=bÞ3fðW̄ ;XX Þ

2
þ ðW̄ ;YY Þ

2
þ 2nW̄ ;XX W̄ ;YY þ 2ð1� nÞðW̄ ;XY Þ

2
g�dX dY

(19)

and

T1 ¼

Z 1

0

Z b=a

0

½ð1þ b1X Þð1þ b2Ya=bÞW̄
2
�dX dY : (20)

Here

l2 ¼ 12rð1� n2Þa2=Eh̄
2

0. (21)

Eq. (18) involves the unknown A1 & A2 arising due to the substitution of W from Eq. (14). These two
constants are to be determined from Eq. (18), as follows:

qðV1 � l2p2T1Þ=qAn ¼ 0; n ¼ 1; 2. (22)

On simplifying (22), one gets

bn1A1 þ bn2A2 ¼ 0; n ¼ 1; 2, (23)

where bn1, bn2 (n ¼ 1, 2) involve parametric constant and the frequency parameter.
For a non-trivial solution, the determinant of the coefficient of Eq. (23) must be zero. So one gets, the

frequency equation as

b11 b12

b21 b22

�����
����� ¼ 0, (24)

where

b11 ¼ ½ð9b
3
1 þ 32b21 þ 42b1 þ 28Þð7b32 þ 36b22 þ 66b2 þ 44Þ=ð485100Þ þ ða=bÞ4ð7b31 þ 36b21 þ 66b1 þ 44Þ

ð9b32 þ 32b22 þ 42b2 þ 28Þ=ð485100Þ þ nða=bÞ2ðb31 þ 6b21 þ 12b1 þ 8Þðb32 þ 6b22 þ 12b2 þ 8Þ=ð44100Þ

þ 4ð1� nÞða=bÞ2ðb31 þ 4b21 þ 6b1 þ 4Þðb32 þ 4b22 þ 6b2 þ 4Þ=ð44100Þ � 2l2ð2þ b1Þð2þ b2Þ=ð1260Þ
2
�,

b12 ¼ b21 ¼ ½ðb
3
1 þ 4b21 þ 6b1 þ 4Þð4b32 þ 21b22 þ 39b2 þ 26Þ=ð840840Þ

þ ða=bÞ4ð4b31 þ 21b21 þ 39b1 þ 26Þðb32 þ 4b22 þ 6b2 þ 4Þ=ð840840Þ

þ nða=bÞ2ð3b31 þ 17b21 þ 33b1 þ 22Þð2b32 þ 15b22 þ 33b2 þ 22Þ=ð10672200Þ

þ nða=bÞ2ð2b31 þ 15b21 þ 33b1 þ 22Þð3b32 þ 17b22 þ 33b2 þ 22Þ=ð10672200Þ

þ ð1� nÞða=bÞ2ð5b31 þ 21b21 þ 33b1 þ 22Þð5b32 þ 21b22 þ 33b2 þ 22Þ=ð5336100Þ

� 2l2ð2þ b1Þð2þ b2Þ=ð5544Þ
2
�,

b22 ¼ ½ð5b
3
1 þ 21b21 þ 33b1 þ 22Þð3b32 þ 16b22 þ 30b2 þ 20Þ=ð46246200Þ

þ ða=bÞ4ð3b31 þ 16b21 þ 30b1 þ 20Þð5b32 þ 21b22 þ 33b2 þ 22Þ=ð46246200Þ

þ nða=bÞ2ð3b31 þ 19b21 þ 39b1 þ 26Þð3b32 þ 19b22 þ 39b2 þ 26Þ=ð100200100Þ

þ ð1� nÞða=bÞ2ð11b31 þ 48b21 þ 78b1 þ 52Þð11b32 þ 48b22 þ 78b2 þ 52Þ=ð400800400Þ

� 2l2ð2þ b1Þð2þ b2Þ=ð24024Þ
2
�.

From Eq. (24), one can obtains a quadratic equation in p2 from which the two values of p2 can found.
After determining A1 & A2 from Eq. (23), one can obtain deflection function W.
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Choosing A1 ¼ 1, one obtains A2 ¼ �b11/b12 and then W comes out as

W ¼ ½XY ða=bÞð1� X Þð1� Ya=bÞ�2½1þ ð�b11=b12ÞXY ða=bÞð1� X Þð1� Ya=bÞ�. (25)
5. Time functions of vibrations of visco-elastic plates

Time functions of free vibrations of visco-elastic plates are defined by the general ordinary differential
Eq. (7). Their form depends on visco-elastic operator ~D.

For Kelvin’s model, one can have

~D � f1þ ðZ=GÞðd=dtÞg. (26)

Using Eq. (26) in Eq. (7), one obtains

€T þ p2ðZ=GÞ _T þ p2T ¼ 0. (27)

Eq. (27) is a differential equation of order two for time function T.
Solution of Eq. (27) comes out as

TðtÞ ¼ ea1t½C1 Cos b1tþ C2 Sin b1t�, (28)

where

a1 ¼ �p2Z=2G (29)

and

b1 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðpZ=2GÞ2

q
(30)

and C1, C2 are constants which can be determined easily from initial conditions of the plate.
Let us take initial conditions as

T ¼ 1 and _T ¼ 0 at t ¼ 0. (31)

Using Eq. (31) in Eq. (28), one obtains

C1 ¼ 1 and C2 ¼ p2ðZ=GÞ=2b1 ¼ �a1=b1. (32)

Using Eq. (32) in Eq. (28), one have

TðtÞ ¼ ea1t½Cos b1tþ ð�a1=b1ÞSin b1t�. (33)

Thus, deflection w may be expressed, by using Eq. (33) and (25) in Eq. (4), to give

w ¼ ½XY ða=bÞð1� X Þð1� Ya=bÞ�2½1þ ð�b11=b12ÞXY ða=bÞð1� X Þð1� Ya=bÞ�

� ½ea1tfCos b1tþ ð�a1=b1ÞSin b1tg�. ð34Þ

Time period of the vibration of the plate is given by

K ¼ 2p=p, (35)

where p is frequency given by Eq. (24).
Logarithmic decrement of the vibrations given by the standard formula

^ ¼ logeðw2=w1Þ, (36)

where w1 is the deflection at any point on the plate at time period K ¼ K1 and w2 is the deflection at same point
at the time period succeeding K1.
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6. Numerical evaluations

Computations have been made for calculating the values of logarithmic decrement (4), time period (K) and
deflection (w) for a isotropic visco-elastic rectangular plate for different values of taper constants b1 & b2 and
aspect ratio a/b at different points for first two modes of vibrations.

In calculations, the following material parameters are used:

E ¼ 7:08� 1010 N=M2,

G ¼ 2:632� 1010 N=M2,

Z ¼ 14:612� 105 N s=M2,

r ¼ 2:80� 103 kg=M3,

n ¼ 0:345.

These values have been reported [9] for ‘Duralium’. The thickness of the plate at the center is taken as
h0 ¼ 0.01m.
7. Results and discussion

Tables 1 and 2 contains numerical results for logarithmic decrement 4 and time period K, respectively, for
aspect ratio a/b ¼ 1.5 for first two modes of vibration for different values of taper constants b1 & b2. It can be
seen from tables that as taper constant increases, logarithmic decrement and time period decrease. Also, the
effect of taper constant is more in y-direction in comparison to x-direction.

Table 3 depicts values of time period K for first two modes of vibration for different values of aspect ratio a/
b for the following two cases: (i) b1 ¼ b2 ¼ 0.0 and (ii) b1 ¼ b2 ¼ 0.6.

It is interesting to note that as aspect ratio increases, time period decreases in the above two cases for both
modes of vibration.

Tables 4–7, respectively, contains numerical values of deflection w (i.e. amplitude of vibration mode) for
aspect ratio a/b ¼ 1.5 for first two modes of vibration for different values of X and Y for the following:
Ta

Lo

asp

b1

0.0

0.2

0.4

0.6

0.8

1.0
Table 4: b1 ¼ b2 ¼ 0.0 and time is 0K,
Table 5: b1 ¼ b2 ¼ 0.0 and time is 5K,
Table 6: b1 ¼ b2 ¼ 0.6 and time is 0K,
Table 7: b1 ¼ b2 ¼ 0.6 and time is 5K.
One can get results for higher modes of vibration by adding more terms to expression (14).
ble 1

garithmic decrement (
V
) if a clamped visco-elastic rectangular plate for different values of taper constants (b1 & b2) and a constant

ect ratio (a/b ¼ 1.5)

b2

0.0 0.2 0.4 0.6 0.8 1.0

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

�0.164188 �0.652611 �0.181522 �0.722762 �0.200325 �0.799689 �0.220184 �0.881917 �0.240808 �0.968431 �0.261993 �1.058551

�0.181000 �0.720298 �0.200110 �0.798014 �0.220836 �0.883348 �0.242727 �0.974714 �0.265460 �1.071037 �0.288813 �1.171622

�0.198447 �0.790672 �0.219396 �0.876352 �0.242109 �0.970567 �0.266093 �1.071635 �0.291001 �1.178444 �0.316588 �1.290307

�0.216371 �0.863253 �0.239209 �0.957267 �0.263957 �1.060820 �0.290085 �1.172157 �0.317217 �1.290154 �0.345090 �1.414168

�0.234664 �0.937716 �0.259428 �1.040427 �0.286250 �1.153784 �0.314561 �1.275984 �0.343957 �1.405930 �0.374158 �1.543073

�0.253244 �1.013853 �0.279965 �1.125632 �0.308892 �1.249282 �0.339418 �1.382989 �0.371112 �1.525734 �0.403675 �1.677132
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Table 2

Time period (K� 10�5) of a clamped visco-elastic rectangular plate for different values of taper constants (b1 & b2) and a constant aspect

ratio (a/b ¼ 1.5)

b2

0.0 0.2 0.4 0.6 0.8 1.0

b1 First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

First

mode

Second

mode

0.0 667.9 169.0 604.2 152.8 547.5 138.4 498.2 125.8 455.6 114.8 418.8 105.4

0.2 605.9 153.4 548.1 138.7 496.7 125.6 452.0 114.1 413.4 104.2 380.0 95.6

0.4 552.7 139.9 500.0 126.5 453.2 114.6 412.4 104.1 377.1 95.1 346.7 87.3

0.6 507.0 128.4 458.6 116.1 415.7 105.2 378.3 95.6 346.1 87.3 318.2 80.1

0.8 467.5 118.5 422.9 107.1 383.4 97.0 349.0 88.2 319.2 80.5 293.6 73.9

1.0 433.3 109.9 392.0 99.3 355.4 90.0 323.5 81.8 296.0 74.7 272.2 68.5

Table 3

Time period (K� 10�5) of a clamped visco-elastic rectangular plate for different aspect ratio (a/b)

a/b b1 ¼ b2 ¼ 0.0 b1 ¼ b2 ¼ 0.6

First mode Second mode First mode Second mode

0.5 1650.1 412.6 934.9 233.2

1.0 1129.0 288.5 639.4 163.3

1.5 667.9 169.0 378.3 95.6

2.0 412.5 103.2 233.7 58.3

2.5 274.4 68.1 155.5 38.5

Table 4

Deflection (w� 10�5) of a clamped visco-elastic rectangular plate for different values of X and Y, a constant aspect ratio (a/b ¼ 1.5) and

b1 ¼ b2 ¼ 0.0 and time ¼ 0K

Y

0.2� (b/a) 0.4� (b/a) 0.6� (b/a) 0.8� (b/a)

X First mode Second mode First mode Second mode First mode Second mode First mode Second mode

0.2 66.3 33.1 150.0 37.9 150.0 37.9 66.3 33.1

0.4 150.0 37.9 340.5 �37.9 340.5 �37.9 150.0 37.9

0.6 150.0 37.9 340.5 �37.9 340.5 �37.9 150.0 37.9

0.8 66.3 33.1 150.0 37.9 150.0 37.9 66.3 33.1

Table 5

Deflection (w� 10�5) of a clamped visco-elastic rectangular plate for different values of X and Y, a constant aspect ratio (a/b ¼ 1.5) and

b1 ¼ b2 ¼ 0.0 and time ¼ 5K

Y

0.2� (b/a) 0.4� (b/a) 0.6� (b/a) 0.8� (b/a)

X First mode Second mode First mode Second mode First mode Second mode First mode Second mode

0.2 29.2 1.3 66.0 1.4 66.0 1.4 29.2 1.3

0.4 66.0 1.4 149.8 �1.4 149.8 �1.4 66.0 1.4

0.6 66.0 1.4 149.8 �1.4 149.8 �1.4 66.0 1.4

0.8 29.2 1.3 66.0 1.4 66.0 1.4 29.2 1.3
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Table 6

Deflection (w� 10�5) of a clamped visco-elastic rectangular plate for different values of X and Y, a constant aspect ratio (a/b ¼ 1.5) and

b1 ¼ b2 ¼ 0.6 and time ¼ 0K

Y

0.2� (b/a) 0.4� (b/a) 0.6� (b/a) 0.8� (b/a)

X First mode Second mode First mode Second mode First mode Second mode First mode Second mode

0.2 68.5 33.1 157.6 38.1 157.6 38.1 68.5 33.1

0.4 157.6 38.1 365.8 �37.2 365.8 �37.2 157.6 38.1

0.6 157.6 38.1 365.8 �37.2 365.8 �37.2 157.6 38.1

0.8 68.5 33.1 157.6 38.1 157.6 38.1 68.5 33.1

Table 7

Deflection (w� 10�5) of a clamped visco-elastic rectangular plate for different values of X and Y, a constant aspect ratio (a/b ¼ 1.5) and

b1 ¼ b2 ¼ 0.6 and time ¼ 5K

Y

0.2� (b/a) 0.4� (b/a) 0.6� (b/a) 0.8� (b/a)

X First mode Second mode First mode Second mode First mode Second mode First mode Second mode

0.2 16.1 0.083 36.9 0.096 36.9 0.096 16.1 0.083

0.4 36.9 0.096 85.8 �0.093 85.8 �0.093 36.9 0.096

0.6 36.9 0.096 85.8 �0.093 85.8 �0.093 36.9 0.096

0.8 16.1 0.083 36.9 0.096 36.9 0.096 16.1 0.083
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